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The exact roots of the closed-loop characteristic at K =2 are
ats=—12.2, s= ~0.546 £ j1.804, and s = — 17.35% j3.550,
and the dominant pair yields the exact damping ratio of 0.282.
The small error in the method, primarily attributable to the
influence of other modes, may be somewhat reduced by using
both forward and backward perturbations around the natural
frequency.

The secondary damping contributed by the other pair of
complex poles may sometimes be found by a similar proce-
dure, provided that the mode is well separated from all other
modes and that the higher frequency signals are sufficiently
large to be measurable without noise interference or overly
sophisticated instrumentation systems. In this particular exam-
ple, the real pole at s = — 12.2 contributes significant change in
phase angle in the spectral region dominated by the other
complex poles, thus causing the method to fail.

Conclusions

A simple method for estimating the damping that is present
in systems dominated by a single pair of complex conjugate
poles has been illustrated. The method constitutes an addition
to the tool kit of the dynamic systems experimentalist by
providing a relatively straightforward means for the quantita-
tive determination of damping by measurement.
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Use of the Work-Energy
Rate Principle for Designing
Feedback Control Laws
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Introduction

T is often felt that control designers do not exploit the

principles of analytical dynamics in designing feedback
control laws for physical systems. It is shown here that for a
class of physical systems, feedback control laws are naturally
obtained from the system dynamics by using the Work-Energy
Rate Principle. It will be seen that the method applies to a wide
variety of linear/nonlinear and discrete/continuous systems.

One of the powerful methods of designing feedback control
laws for nonlinear systems is based on Lyapunov’s second
stability theorem.! Energy-type quadratic functions are usually
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used?® in the application of the Lyapunov stability theorem.
The time derivative of the Lyapunov function is obtained by
substituting the system equations to eliminate acceleration
terms. This process is often tedious and involves integration by
parts for distributed parameter systems such as flexible space-
craft. If the time derivative of the Lyapunov function can be
obtained without substituting the equations of motion, then
the control design efforts will be reduced drastically. This is
the motivation behind this Note. The expression for the rate of
change of system energy is formulated using the Virtual Work
Principle,”® and two examples are given to show the power of
this method.

Work-Energy Rate Principle
When the system is composed of N particles, it is configured
by N physical position vectors x, measured relative to an iner-
tial frame or n(n <3N) generalized coordinates g;. The coor-
dinate transformations between the physical and the general-
ized coordinates are given by
(k=1,2,...,N) )

Xi =X4(g1,925 - Gn,1)s

and their time derivatives are related by
h= L ey B @

T aq; @i at
The forces exerted on the kth particle can be grouped as the

applied force F; and the constraint force R,. When the con-
straints are workless, the Virtual Work Principle is stated as

N
k;‘ (Fp—mpX)Tox, =0 3)

where éx indicates the kth virtual displacement vector. Using
the generalized virtual displacement identity and generalized
force definition

oxy = A\f.: <8_x,l> 0q; 4)

=1 \dq;
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Eq. (3) can be rewritten as
n N
L7 0x

z <Q.-~ L mii{ a—">5q,- =0 ©)

i=1 k=1 qi

For the general case, suppose that the system has # nonholo-
nomic constraints given as

EajIBQiZO (J=12,...,m)
i=1

then by using Lagrange multipliers A;, Eq. (6) can be written
as

n " N
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and we get
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Multiplying ¢; on both sides of Eq. (8) and summing for all /
leads to an interesting result: the left side of Eq. (8) becomes

Yy 3 mexd 36 g - Z # E
L= KXk 3q; q;= - my Xy 6 q,
N N x
= Y mElxe - ¥ mex] =24
Py at
a7 X L 0X
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Thus we obtain
dr - ax
T - EQat ):c,q, + Emm = (10)
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where
m
Ci= _El>\jaji
o

are the generalized constraint forces. Equation (10) represents
the Work-Energy Rate Principle in the generalized coordinate
space. It can be stated as, the rate of change of total kinetic
energy of the system is equal to the rate of change of work
done by applied forces F, and constraint forces R;. By substi-
tuting Eq. (5) into Eq. (10) and using the facts F, + R, =m X,
and

n ) n N axk
LCigi=YX LRI 54 (1
i=1 i=1 k=1 qi

we obtain
dT N N
— = LFlx;+ Y Rl % (12)
dr /=2 k=1

This equation also represents the Work-Energy Rate Principle
in the physical coordinates, which can be obtained directly
from the kinetic energy expression.

Because Eqs. (10) and (12) include the constraint forces,
their direct applications to practical problems are difficult.
However, if constraints are holonomic and 6g; are indepen-
dent, then from the workless condition

ax
ERI\(SxA_E ERA £

k=1 i=1k=1 qi
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we can see that

N
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Therefore, Egs. (10) and (12) can be written, respectively, as

dTr dxy
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which represent the Work-Energy Rate Principle for holo-
nomic systems.® For scleronomic (no explicit time dependence)
systems, Eqs. (15) and (16) can be reduced further as

dT !
PR ;QIQI (17)

ar X
— = Y Flx (18)
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The generalized force can be written as’
9V dFy B

Q=5 -5 +0 (19)

where F, represents the quadratic Rayleigh’s dissipation func-
tion, Vis the potential energy, and Qf are due to other external
nonconservative forces. Then Eq. (17) can be written as

d "

Y (T+V)= -2F; + [El Q4 (20
Note that when there is no nonconservative applied force the
rate of change of system total energy is — 2F,; (see Ref. 7).
Equation (20) will be shown useful in the design of feedback
control laws in many applications. We confine ourselves to the
scleronomic and holonomic cases in the examples that follow.,

Applications

Two examples involving the design of feedback control laws
for spacecraft maneuvers are presented.

Rigid Spacecraft Maneuver with Torque Controtlers

Consider a rigid spacecraft with three torque devices. The
states are represented by Euler parameter vector 8 and the
angular velocity vector w. The final state is the rest state in
which the vehicle frame coincides with the inertial frame { N }.
The system kinematic equations are given as

8 B ~Bs
gt 2T B eme e
20 8 B -8|°72

e B

Let the trial Lyapunov function be an energy-type quadratic
function:

L=T+ %(B-B7)"Ki(B~B/) 22)

where K, is a symmetric positive definite matrix, 7 repre-
sents the system kinetic energy, and 3,denotes the object state,

e., B,=[1 0 0 0]7; L is positive definite and radially
unbounded. The time derivative of L is

L=T+w"GT(®K\(B-8)) (23)

Using the Work-Energy Rate Principle [Eq. (17)], T can be
written as

T=w0u 24

where u represents the control torque applied on the space-
craft. A feedback control law that makes L negative semi-
definite can be chosen as

u=-Kyo—GUBK (B-By) (25)

where K, is a positive definite matrix. The same control law
can also be obtained by substituting the dynamic equations of
motion into Eq. (33) by following the procedure outlined in
Refs. 2 and 3. This simple example introduces the application
of the Work-Energy Rate Principle. Its value can be better
appreciated when applied to a more complicated problem.

Flexible Spacecraft Maneuver with Multiple Controllers

Consider a flexible spacecraft that has a central rigid hub
and four flexible appendages, as shown in Fig. 1. It is equipped
with torque controllers on each appendage as well as a central
torque controller on the hub. Our objective is to maneuver the
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U;

Fig. 1 Flexible spacecraft with controllers.

spacecraft to the rest state and to suppress the bending vibra-
tion of the appendages. A single-axis maneuver is considered
in this example for simplicity.

Let the candidate Lyapunov function be made up of the
total energy and a pseudopotential energy of rotation:

L =E+ Yaky6-~0,)%, ky>0 (26)

where 6 represents the present rotational angle and 6, is the
object angle (fixed). From the Work-Energy Rate Principle,

. . " ) s a)/'i
E_u,0+i§u,[6+ 5—[<5;>] . 2n

where u, is the central controller torque and u; is the ith ap-
pendage controller torque. Let 8;=(8/91)[(3y;/8x)] be the
rate of change of slope at the ith appendage controller loca-
tion. Then, the time derivative of L is

L=ub+ko@—0,)0+Yu;(0+8)) (28)

The hub and appendage control laws can then be obtained as
Uy = —K,0— ky® 6,) (29)

u;= —Ki(6+0)) (30)

where k4, K,, and K; are positive gains. Note that this ap-
proach does not need the assumption of small deflections of
the appendages and consideration of specific mode shapes. All
controllable modes are stabilized and no discretization errors
corrupt the stability arguments. Derivations of control laws
for the system from the hybrid ordinary/partial differential
equations of motion (without using the Work-Energy Rate
Principle) can be found in Refs. 4-6.

Conclusions

The Work-Energy Rate Principle in the generalized coordi-
nate space is applied to design feedback control laws for the
class of systems that admit total energy as a part of the Lya-
punov function. It is shown that the use of this principle re-
duces the effort required to design feedback control laws for
scleronomic and holonomic systems. It is also shown that
equations of motion need not be derived to design the feed-
back control laws and all developments are extensions of the
work/energy method and the Principle of Virtual Work. All of
the feedback control laws derived in these examples render the
closed-loop system asymptotically stable. This method can be
applied to rheonomic or nonholonomic systems by properly
defining the constraint forces.
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Kane’s Equations, Lagrange’s
Equations, and Virtual Work

Miles A. Townsend*
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Introduction

HE literature does not appear to contain a derivation of

Kane’s equations from some first principle. In general,
Kane’s generalized forces are presented as definitions, from
which Kane’s equations then follow.!-* In this Note, Kane’s
generalized forces and equations are derived from a first prin-
ciple—the work-energy form of Newton’s second law. La-
grange’s equations can also be derived from this same basic
form; although it differs conceptually from the usual virtual
work (also known as d’Alembert principle) derivations, many
of the steps are similar. These parallel derivations clearly show
the commonality of Kane’s and Lagrange’s equations and the
occurrence of virtual work-type terms.

The common feature of Lagrange’s and Kane’s equations is
the transformation to generalized coordinates so that system
constraint forces are (or can be) eliminated. In the usual
derivations of Lagrange’s equations, this is attributed to the
restricted character of the virtual displacements®!3: displace-
ments ‘‘for which the virtual work of the forces of constraint
vanishes.”’® In Kane’s equations, forces of constraint are elim-
inated if the vector multiplied (dot product) into Newton’s law
is chosen properly.? In some derivations of Lagrange’s equa-
tions, the vector multiplied into Newton’s law is similarly cho-
sen.'t In all cases, explicit time-varying (rheonomic) kine-
matical terms are discarded, or simply not considered, often
without comment. When explanations of virtual displacements
and properly chosen vectors are presented, they tend to be
convoluted and unenlightening.>>!3 The present derivations
avoid these ambiguities and explanations and possibly provide
increased generality.

Derivations

The derivations are for a holonomic system of p constant-
mass particles. Inclusion of rigid bodies is straightforward.
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